Resolution Number: AC/I(21-22).2(II).RUS7

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to Mumbai University)

Syllabus for

Program: Bachelor's Degree in Life Science

Program Code: RUSLSc

CBCS 2022-23

(Choice based Credit System for Academic year 2022–2023)

GA	GA Description
	A student completing Bachelor's Degree in Life Science
	program will be able to:
GA 1	Demonstrate an understanding of biological systems across
	microorganisms, plants and animals. To develop necessary
	laboratory skills and analytical methods.
GA 2	Employ critical thinking and scientific knowledge to design
	experiments, record observations, analyse data and interpret
	results. They can further build their career in research.
GA 3	Create an awareness of environmental issues, biological
	diversity, and how we can make a positive impact on it.
GA 4	Inculcate scientific temperament and generate problems
	solving approaches in students when they integrate
	themselves in the larger society.
GA 5	Develop necessary laboratory skills and analytical methods.
anna	

Graduate Attributes

PO	Description			
	A student completing Bachelor's Degree in the subject of Life Science will be able to:			
PO1	To be able to describe the biomolecules and metabolic processes, compare developmental processes and physiological systems in plants and animals, neuroendocrine system, short term and long term memory, learning and behaviour, neurological disorders, biological evolution, human evolution of thought process, which allows for curiosity, and enhances learning process ahead.			
PO2	To be able to describe interspecific interactions in the ecosystem, Plant Tissue Culture techniques and its significance in agriculture, germplasm conservation and secondary metabolites, and Animal Tissue Culture techniques, Fermentation Technology and its role in industry and society			
PO3	To be able to explain DNA Cloning, use of cloning vectors like <i>E.coli</i> plasmids, cosmids, phagemids, viral vectors, significance of restriction enzymes, apply Mendel's laws, gene regulation in prokaryotes and eukaryotes, defense mechanisms in plants and			
	animals, innate and adaptive immune system, and its			

PROGRAM OUTCOMES

	Fermentation Technology and its role in industry and society			
PO3	To be able to explain DNA Cloning, use of cloning vectors like			
	<i>E.coli</i> plasmids, cosmids, phagemids, viral vectors, significance			
	of restriction enzymes, apply Mendel's laws, gene regulation in			
	prokaryotes and eukaryotes, defense mechanisms in plants and			
	animals, innate and adaptive immune system, and its			
	disruptions in the form of allergies, autoimmune diseases			
	and immunodeficiency disorders. applications of			
	Monoclonal antibodies in cancer			

PO4	Apply Biostatistics to analyse, Probable Chance of
	Occurrence, Normal Population, Student's t-test, Correlation
	and Regression analysis, Chi-Square test, data analysis for
	project work
PO5	Skills-Perform assays to identify, purify, quantify,
	immobilize proteins/enzymes using techniques like
	Centrifugation, Electrophoresis and Chromatography,
	dissection of animals, protocols to handle preserved
	animals, working in aseptic conditions, use and maintaining
	of diagnostic kits, pedigree analysis in humans, karyotyping
	in plants
PO6	Skills- Apply Bioinformatics to understand the evolution of
	macromolecules, the genomic status of organisms, to
	compare the phylogenetic relationships, to analyse nucleotide
	and protein sequences, to annotate nucleotide sequences and
	derive structure function relationship.
PO7	Environment and Sustainability- to analyse the local
	biodiversity at residential sites of students and the changes
	occurring in the biodiversity and to conserve the same,
	awareness about implementation of Laws Regulations,
	citizens awareness to oppose under the aegis of NGO
PO8	Ethics- awareness of plagiarism in scientific work,
	acknowledging/ citing the work, lab ethics in handling
·O.	biological materials and chemicals, to be able to apply
	professional and ethical principles, minimize waste and
	ethical waste disposal
PO9	Individual and Team Work- to be able to work independently
	as well as lead a team and be a team player,

PO10	Communication skills- to be able to communicate
	clearly through presentations as well as document, write
	effective reports or communicate and work in a team
PO11	Project Management- to be able to write SOPs for
	instruments, design experiments, analyse data, work in a
	team, a scientific way of thinking, a diverse approach to
	scientific enquiry towards an idea .
PO12	Life Long Learning- to be able to learn independently and
	adapt to changing needs of the society
	Ruianuione
	alinanic
anat	ainanicone
anna	annahuton
Raunar	annaliante
Rauna	annahitoria
Raunar	innianuton
Rauna	and
Rauna	annahutone

YEAR	S	COURSE	Type COURSE TITLE	CREDI
	E	CODE		ΤS
	M			
FYBSc	Ι	RUSLSc101	CC Molecular and Cellular studies in	2
			Life Sciences I	202
FYBSc	Ι	RUSLSc102	CC Physiological systems, Genetics	2
			and Ecology I	
FYBSc	Ι	RUSLScP101	CCPracticals in Molecular and Cellular	1
			studies in Life Sciences I	
FYBSC	Ι	RUSLScP102	CCPracticals in Physiological	1
			systems, Genetics and Ecology I	
FYBSc	Π	RUSLSc2	CC Molecular and Cellular studies in	2
		•	Life Sciences II	
FYBSc	П	01	CC Physiological systems, Genetics	2
			and Ecology II	2
		RUSLSc2		
	KC			
		02		
201				
FYBSc	П	RUSLScP201	CC Practicals in Molecular and Cellular	1
			studies in Life Sciences II	•
FYBSc	II	RUSLScP202	CC Practicals in Physiological systems, Genetics and Ecology II	1
	L	1		

PROGRAM OUTLINE

	1			
SYBSc	II I	RUSLSc301	CC Physiological Systems in Plants and Animals-I	2
SYBSc	II I	RUSLSc302	CC Biochemical Approach to Life Processes in Plants and Animals-I	2
SYBSc	II I	RUSLSc303	CC Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-I	2
SYBSc	II I	RUSLScP301	CC Practicals in Physiological Systems in Plants and Animals-I	1
SYBSc	II I	RUSLScP302	CC Practicals in Biochemical Approach to Life Processes in Plants and Animals- I	1
SYBSc	II I	RUSLScP303	CC Practicals in Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies- I	1
SYBSc	I V	RUSLSc401	CC Physiological Systems in Plants and Animals-II	2
SYBSc	I V	RUSLSc402	CC Biochemical Approach to Life Processes in Plants and Animals-II	2

२

SYBSc	Ι	RUSLSc403	CC Evolutionary Biology,	2
	V		Biostatistics and Bioinformatics	
			in Population Studies-II	

			Tagian a Sparing o Earl	0
SYBSc	I	RUSLScP401	CC Practicals in Physiological	1
			Systems in Plants and	
			Animals-II	
SYBSc	I	RUSLScP402	CC Practicals in Biochemical	1
			Approach to Life Processes in	
			Plants and Animals- II	
			XQ.	
SYBSc	I	RUSLScP403	CC Practicals in Evolutionary	1
			Biology, Biostatistics and	
			Bioinformatics in Population	
			Studies- II	
TYBSc	V	RUSLSc5	DSC Genetics and Immunology-I	4
	K			•
TYBSc	V	01	DSC Developmental Biology and	4
I I DSC			Neurosciences- I	т
		RUSLSc5		
		02		

		-		
TYBSc	V	RUSLSc503	DSC Biotechnology and Genetic	4
			Engineering- I	
TYBSc	V	RUSLSc504	DSC Ecology, Conservation Biology,	4
			Assessment and	
			Management- I	0.
		Applied	SEC Horticulture / Marine Science or	2L+2P
			Any Other	0 2
TYBSc	V	RUSLScP501	DSC Practicals in Genetics and	1.5
			Immunology-I	
TYBSc	V	RUSLScP502	DSC Practicals in Developmental	1.5
IIDSC			Biology and Neurosciences	1.5
TYBSc	V	RUSLScP503	DSC Practicals in Biotechnology and	1.5
		•	Genetic Engineering – I	
TYBSc	V	RUSLScP504	DSC Practicals in Ecology,	1.5
			Conservation Biology,	
			Assessment and Management – I	
TYBSc	V	RUSLSc6	DSC Genetics and Immunology- II	4
TYBSc	Ι	01	DSC Developmental Biology and	4
			Neurosciences- II	
	V	RUSLSc6		
L		I	1	1

	Ι	02		
TYBSc	V	RUSLSc603	DSC Biotechnology and Genetic	4
	Ι		Engineering- II	
TYBSc	V	RUSLSc604	DSC Ecology, Conservation Biology,	4
	I		Assessment and Management-	S
			П	
		Applied	SEC Horticulture / Marine Science or	2L+
			Any Other	
TYBSc	V	RUSLScP601	DSC Practicals in Genetics and	1.5
TIDOC	I		Immunology – II	1.5
TYBSc	V	RUSLScP602	DSC Practicals in Developmental	1.5
	Ι		Biology and Neurosciences –	
			П	
TYBSc	V	RUSLScP603	DSC Practicals in Biotechnology and	1.5
	Ι		Genetic Engineering – II	
TYBSc	V	RUSLScP604	DSC Practicals in Ecology,	1.5
	Ι		Conservation Biology,	
			Assessment and Management –	
231			II	

DSC - Discipline Specific Course *

SEC - Skill Enhancement Elective Courses *

6

Course Code: RUSLSc101

Course Title: Molecular and Cellular studies in Life Sciences I

Academic year 2022-2023

COURSE OUTCOMES:

COURSE	DESCRIPTION				
OUTCOME	CO''				
	Students will gain insights about following;				
CO1	To explain structures and functions of amino acids, proteins, nucleic acids, nucleus and nuclear membrane, giant chromosomes, lampbrush chromosomes, functions of cytoskeletal elements.				
CO2	To describe plant cell wall, bacterial cell wall and fungal cell wall, eukaryotic and prokaryotic cells, different microbial media, microbial preservation techniques.				
CO3	To classify amino acids, proteins in different ways				
CO4	To differentiate between essential nonessential amino acids, complete, incomplete proteins, different forms of DNA, Distinguish between different phases in cell cycle and cell division.				
C05	To compare different cell wall types, compare different phases of microbial growth				

Course Code: RUSLSc102

Course Title: Physiological systems, Genetics and Ecology I

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUT	COMES:
COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Students will learn comparative physiological systems from lower to higher phyla in animals and they will also study the parallel systems in plants eg. Respiration in animals and plants.

DETAILED SYLLABUS

ourse Uni	Course/ Unit Title	Credit
e/ Unit t		s/
	$\cdot \alpha$	Lectur
		es
	F.Y.B.Sc. LIFE SCIENCES (Theory)	2 Credits/4
		5Lectures
LSc 101	Molecular and Cellular studies in Life Sciences I	
	I I I I I I I I I I I I I I I I I I I	

	Physiological Role of water: Structure of	
	i hysiological itole of water, stractare of	
	water molecule, ionic interactions, ionic	
	product of water, concept of pH, buffers and	
	its types, Henderson Hasselbalch equation,	
	-	
		0
	-	K
		. 0.9
	organization- Primary, Secondary,	Lectures
	Tertiary,Quaternary levels. One example ofeach.)
	Nucleic acids:	
	Structure of nucleosides and nucleotides,	
	hereditary molecule.	
II	Features of Eukaryotic and Prokaryotic	15
	cells Microscopy:	Lectures
	Chloroplast, Mitochondria.	
0	Virus	
	v ii us.	
	П	its types, Henderson Hasselbalch equation, significance of water.Amino acids: Classification based on R groups, essential, semi essential and non essential amino acids.Proteins: Classification, Functions, Incomplete and complete proteins, Structural organization- Primary, Secondary, Tertiary,Quaternary levels. One example ofeach. Nucleic acids: Structure of nucleosides and nucleotides, structure of nucleic acids (A,B,Z forms); the structure of DNA lends itself to its function as hereditary molecule.IIFeatures of Eukaryotic and Prokaryotic

		 Virus structure, Life cycle of bacteriophage (Lytic and Lysogenic), Plant and Animal virus (One example: TMV and Adeno virus, Corona virus). Microbial growth: Influencing factors, culture media (enriched and minimal), isolation, preservation, life cycle and growth curve of <i>E.coli</i>. Cell division: Mitosis and Meiosis with phases in cell division with significance. 	
	II	Cytoskeletal elements and cell wall Nucleus: Structure and Chromosome packaging, lampbrush and polytene chromosome. Cytoskeletal elements: Microfilaments: Structure and function in striated muscle fibers. Role in cytoplasmic streaming in plants. Microtubules: Structure as in cilia or in flagella, mechanism in movement. Function in mitotic spindle. Intermediate filaments: Structure and function. Structure of cell wall: Bacterial cell wall: Gram positive and Gram negative. Fungal cell wall Plant cell wall: Primary and secondary	15 Lectures
RUSLSc102		Physiological systems, Genetics and Ecology I	2 Credits/4 5Lectures
	I	Types of Nutrition and Nutritional adaptations for different habitats Autotrophic nutrition – Importance of photosynthesis in plants and in autotrophic prokaryotes .	15 Lectures

		Macro and micro nutrients for plants. Insectivorous plants Heterotrophic nutrition – ex. holozoic, saprophytic (fungi) and parasitic (Cuscuta, Tapeworm) i) fluid feeders (ex. Mosquito or Housefly) ii) microphagous (ex. Amoeba or Paramecium) iii) macrophagous (mammals)	.0
		Digestive systems of mammals Human and Ruminant Digestion Evolutionary adaptation associated with diet eg. dental, stomach and intestine.	011605
	II	Mendelian Inheritance: Concept of homozygous, heterozygous, phenotype, genotype, alleles; Mendel's Laws and Mono & Dihybrid ratios with problems, chi square–for 3:1 and 1:1 ratios. Use sickle cell anemia as an example to explain the concept of genes. Chromosomal inheritance: Sutton's hypothesis, sex-linked inheritance, study of human pedigrees (e.g. Sex linked dominant and recessive; autosomal dominant & recessive)	15 Lectures
Rauns	II	 Transport, Translocation in plants and Circulation in animals Translocation in plants: Transport of water and inorganic solutes – transpiration, stomatal functionand regulation, role of proton pumps and factors affecting ascent of xylem sap. Transport of organic solutes – mechanism and its regulation. Circulation in animals: Animals without a circulatory system eg. Hydra and jellyfish Open and closed circulatory system eg. insects vs worms. Vertebrate circulatory system: 	15 Lectures

	Tiglion # Typeli	no a bad
	 Heart; single and double circulation. Specific adaptations – mammals at high altitudes and diving mammals. Cardiovascular system in health and disease – hypertension and atherosclerosis and the role of exercise. Respiration and Gaseous Exchange: Gaseous exchange in small animals (across surface) and cutaneous respiration in frogs. Gaseous exchange in plants – Stomata and Pneumatophores. Gaseous exchange in invertebrates – trachea in insects, book lungs in scorpion Gaseous exchange in vertebrates – gills and lungs 	SHEOS
	PRACTICALS	2 Credits Total 45 lectures
RUSLScP 101	Practicals in Molecular and Cellular studies in Life Sciences - I (PRACTICAL – I)	
23/11/2	 I.Good Laboratory practices: An introduction to Laboratory discipline and GLP, SOP (in detail) and Instrument safety GLP Handling Biological/ Blood and hazardous chemicals. Documentation and validation, Industry purpose. Survey of the organization of laboratory instruments, chemicals and glassware. Lab safety (instruments and chemicals) [incorporated into every practical]. 	
	2.Introduction to Elementary	
	16	

	1
	microbial techniques : Sterilization & Disinfection Air microflora Microbial Staining technique and Microscopy
	Comparative study of samples from 5 different sources to check gram positive and gram negative bacteria - Buttermilk, tap water, sewage water, food Item, soil, rotten – effect of heat using Monochrome Staining Gram Staining. Cell wall staining 3.Micrometry Eukaryotic cells and Microscopicmeasurements: Staining of onion peel / plant cells to reveal structure and organization of cells Micrometry - Using the microscope to measure size of cells / nucleus/ different pollen grains . 4.Effect of temp on movements in plants and animals using any system: Cytoplasmic streaming in Vallisneria and Hydrilla Culturing and observation of feeding in Paramoecium from Hay infusion 5.Preparation of solutions of a given chemical compound Molar and percentage solutions – Concept and calculations only. 6.Molecular biology and Biochemistry:
2 stuller.	Isolation and Detection of DNA (by observing spools) from Onion or any other DPA detection optional / demonstration. 7.Histochemistry:
	Localization of Proteins and Nucleic acids from the suitable system Proteins of peas / cockroach muscles DNA and RNA from onion peel using methyl green pyronin staining. 8.Instrumentation and techniques:
	Calibration of the pH Meter with standard
	· · · · · · · · · · · · · · · · · · ·

	buffer pH4 and pH9.2 as per GLP	
	Checking of pH for common foodstuff e.g.	
	Milk/cola drink/Lime juice or any other	
	relevant sample.	
RUSLScP	9.Microscopy:	2
102	Principles of light and Fluorescent	Credits
	Microscopy, Electron Microscopy-Scanning	Total 45
	Electron Microscopy (SEM) and	lectures
	Transmission Electron Microscopy (TEM).	
	Study of Electron Micrographs as listed	
	below: Mitochondria	
	Lysosomes:Basement membrane/	
	junctions Cilia: Both normal and	
	pathological	
	10.Cell division:	
	Determining effect of colchicine / mitotic	
	inhibitor/environmental pollutant / mitotic	
	activator on mitosis in onion root tip by	
	calculating mitotic index	
	11.Meiosis from <i>Tradescantia</i>	
	(demonstration/ Photograph)	
	Practicals in Physiological systems, Genetics andEcology - I ((Practical -II)	
	1.Study of Plant Tissues :	
	Temporary mounting/ observation of permanent	
	slides of Mounting of Dicot /Monocot	
	Stem,Root. 2.Hematology:	
	Differential count of WBCs using	
2.0.	Giemsa/ Lieishman stain.	
	3. Study of Mouth parts in insect and	
	Comparative assessment of mouth	
	parts: Preparation of fresh mount of;	
	Piercing and sucking type- eg	
	Mosquito Sponging type- eg	
	Housefly	
	Biting and Chewing type- eg Cockroach	

	(if available 4. Collection of blood group information from family and construction of pedigree charts. 5. Diversity of Life: Five Kingdom Classification (Outline)		
--	---	--	--

6. Soil analysis: Edaphic factors
Texture, water content, soil organisms
7. Water Quality - Effect of temperature,
light, pH
8. Field study to at least one site: To
understand flora and fauna, visit a national park
a century or pond or lake or marine ecosystem.
To prepare a field report to be duly certified
Any Industrial Visit or Invited Guest lecture
with reference to FYBSc Life-Science Syllabus

References:

	REFERENCES:
	RUSLSc 101
1.	Cell Biology, Genetics, Molecular biology, Evolution and Ecology P.S. Verma and V.K. Agarwal Publishers : S. Chand and Co.Ltd., (2009)
2.	Becker's World of the Cell: International Edition – 8 th Edition Jeff Hardin Gregory Paul Bertoni, Lewis J. Kleinsmith Publishers: Pearson Dorling Kinderflay India / Pearson India (2011)

3.	Life: The Science of Biology,
	William K Purves, D. Sadava, G. H. Orians and H.C. Heller 7th Edn. (2003) Sinauer Associates
4.	Molecular Cell Biology – 7 th Edition Ed: Harvey Lodish, Arnold Berk, Chris A. Kaiser and 5 more (2012) Pub: Macmillan
L	103
5.	Molecular Biology of the Cell
	Ed: Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter 5th Edition (2007) or 6 th Edition (2014) Pub: Garland Science

	(2014) Pub: Garland Science
6.	Essential Cell Biology
	Ed: Bruce Alberts, Dennis Bray, Karen Hopkin and Alexander
	Johnson (2009) 3rd Edition Pub: Garland Science.
7.	Fundamentals of Biochemistry
, -	
	Ed: Voet. and Voet 4th edition, (2010) Pub: John Wiley and Sons
8.	Lehninger Principles of
	Biochemistry Ed: D.L.
	Nelson, 5th edition,
	(2008) Pub: CBS
	Publishers and
	Distributors.
9.	Principles of Biochemistry
	Ed: Zubay G.L, Parson W.W. and Vance D.E. 1st edition (1995) Pub: W.
	C. Brown.

	RUSLSc 102
1.	Biological Science, Taylor, Green and Stout., 3rd edn. Ed. R. Soper .(2005) Cambridge Univ. press.

2. An Introduction to Genetic Analysis Ed: Griffiths A.J. et al

(2000,) Pub: W. H. Freeman(London) Seventh Edition

3.	Comparative Animal Physiology, Philip C.Withers,(1992), Saunders College Publishing House.
4.	Biology A Modern Introduction, B.S.Beckett (1994), GCSE Edn. Oxford Univ. Press.
5.	Essentials of Human Genetics, S.M.Bhatnagar, M.L.Kothari & L.A.Mehta, (1994), Orient Longman's Publication.
6.	Cell Biology, Genetics, Molecular biology, Evolution and Ecology – P.S. Verma and V.K. Agarwal (2009) Publishers : S. Chand and Co.Ltd.,
7.	Biological Science : - Scott Freeman (2004), Pub: Benjamin Cummings Publishing Company.
8.	Principles of Anatomy and physiology 10 th edition (2003) Gerad J.Tortora and Sandra R.Grabowski John Wiley &Sons. Inc.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Ma
		rks
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

J.J.

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

Duration - These examinations shall be of **02 hrs** duration. Theory question paper pattern:

Questi on	Options	Marks	Based on		
Q1	Answer any 2 questions out of 3 questions on Unit 1 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 1 Each question of 5 marks	15	Unit I
Q2	Answer any 2 questions out of 3 questions on Unit 2 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 2 Each question of 5 marks	15	Unit II
Q3	Answer any 2 questions out of 3 questions on Unit 3 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 3 Each question of 5 marks	15	Unit III
Q4	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	OR	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	15	Unit I, II, III
			Total	60	

RamaainRuaAutonomous college

Solleok

Practical Examination Pattern:

A) Internal Examination: - 20 Marks

Particulars	Marks
Journal	05
Experimental	15
tasks	
Total	20

B) External Examination: - 30 Marks

Semester End Practical Examination:

Particulars	Marks
Main question to	15
perform	\sim
Experimental	
task /Estimation/	
Dissection/	
Statistical analysis.	
Identifications	10
Total	30

Overall Examination & Marks Distribution Pattern

Semester I

	Course	101			102			Gra nd Tot al
X	1	Inter nal	Extern al	Tot al	Inter nal	Extern al	Tot al	
	Theory	40	60	100	40	60	100	200
	Practica ls	20	30	50	20	30	50	100

Course Code: RUSLSc201

Course Title: Molecular and Cellular studies in Life Sciences II

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
	Students will gain insights about following;
CO 1	To explain structure and functions of carbohydrates and lipids, classify lipids and carbohydrates, to illustrate stereochemistry and chemical reactions of monosaccharides.
CO 2	To classify and differentiate between different types of transport systems across cell membranes, plant and animal cell junctions.
CO 3	To explain structure and functions of cell organelles like ER, Golgi apparatus, Lysosomes, Peroxisomes, Glyoxysomes, Chloroplasts and Mitochondria.
CO 4	To differentiate between different separation techniques,like chromatography- paper and thin layer, to explain electrophoresis, differential centrifugation, salting in and out, their advantages, disadvantages and applications of all these techniques.

Course Code: RUSLSc202

Course Title: Physiological systems, Genetics and Ecology II

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Explain the concept of homozygous, heterozygous, phenotype, genotype and alleles.
CO 2	Explain the Mendelian laws, monohybrid and dihybrid ratios with problems and chromosomal inheritance.
CO 3	Interspecific interactions at ecological level and distribution of the population can be related to biodiversity visits.
D <u>etailed s</u>	YLLABUS

DETAILED SYLLABUS

Course Code/ Unit	Uni t	Course/ Unit Title	Credit s/ Lectur es
ann		F.Y.BSc. LIFE SCIENCES (Theory)	Credits/ 45 Lectures
RULSc 201		Molecular and Cellular studies in Life Sciences II	
	Ι	Biomolecules within living cells II Lipids:	15 Lectures

Classification, structures function and properties of lipids (simple, derived and complex with one example each) Carbohydrates: Structure of Monosaccharides, Disaccharides, Oligosaccharide, polysaccharides Animal and plant source starch, glycogen, cellulose and chitin. Separation techniques: Paper and thin layer chromatography, principle of electrophoresis, differential centrifugation, Salting in and salting out (Ammonium sulphate fractionation).	11008
 II Cell Organelles 1 Cell membrane: Membrane models: Unit membrane and Fluid Mosaic Model of Singer and Nicholson. Membrane junctions: Tight, gap, desmosomes, septate. Membrane Transport: Diffusion, osmosis, passive and active transport, endocytosis and Exocytosis. Endoplasmic Reticulum: Structure (including sarcoplasmic reticulum) Role in protein synthesis (ER- Ribosome complex) and transport (Signal Hypothesis). Ribosomes: Subunits in prokaryotes and eukaryotes (including those within chloroplast and mitochondria); ER-Ribosome complex. Lysosomes Primary and Secondary lysosomes and their functions Lysosome associated diseases - Tay Sachs , Silicosis. 	15 Lectures
IIICell Organelles 2 and cell division Mitochondria: Structure of inner, outer membranes & the matrix with a brief mention of oxidative phosphorylation Mitochondria associated diseases (any one example).	15 Lectures

	Plastids:Types and functions: (Leucoplast, chromoplast, Elaioplast), chloroplast morphology, structure of thylakoid membrane, photosynthetic pigments & a brief mention of photo-phosphorylation; chloroplastDNA.Golgi Apparatus - Structure, origin and relation toER . Role in synthesis, storage and secretion of zymogen and glycoprotein.Peroxisomes and Glyoxisomes: Structure and functions	808
	Ruianung	
Rannario		

Course Code/ Unit	Uni t	Course/ Unit Title	Credit s/ Lectur es
		F.Y.BSc. LIFE SCIENCES (Theory)	20
RULSc 202		Physiological systems, Genetics and Ecology - II	Credits/ 45 Lectures
	Ι	 Plant and Animal Physiology Excretion and Osmoregulation: In plants – water and salt regulation under normal and stressed conditions In animals – Phylogenetic review of organs and processes - contractile vacuole, flame cells, nephridium, malpighian tubules, kidney and skin in man Concept of osmoregulation and processes associated with osmoregulation (ultrafiltration, selective reabsorption, secretion, acid-base regulation) Nitrogenous excretory products (ammonotelism, ureotelism and uricotelism) Support and Locomotion: 	15 Lectures
23101		Support in plants – herbaceous and woody plants Types of skeletons – hydrostatic (nematodes), exoskeleton (arthropods/molluscs) and endoskeletons (vertebrates-axial and appendicular skeleton and joints E.g., Human)	
	II	Modifications of Mendel's laws and Mutations Modification of Mendel's laws: Gene interactions: incomplete dominance, co- dominance Multiple genes; Multiple alleles: Blood group; Epistasis; Linkage: Sex limited; sex influenced.	15

	Mutations: Point Mutations Chromosomal aberrations: Structural: deletion, duplication, inversion, translocation.	Lectures
	Numerical: euploidy & aneuploidy (e.g. Downs, Turners. Klienfelter's, Cri- du-chat)	
III	Community Ecology and Animal Behaviour Principles of Ecology: Food chains, flow of energy, food webs, trophic levels, ecological pyramids & their efficiencies. Ecosystem Types – Terrestrial, Aquatic, Hydrothermal vents. Ecological succession: Lithosere and	15
	Hydrosere Behavioural Ecology: Basic behavioural patterns – taxis, tropism, reflex, instinct & conditioned behaviour Ecological Adaptations: plants (any two) and animals (any two) Biological clocks and rhythms	
	Indian Biodiversity – current status	Lectures
maria		
2311		

Course	Uni	Course/ Unit Title	Credit
Code/	t		s/
Unit		PRACTICALS	Lectur es

		2 Credits
		Total 45 lectures
RUSLSc P 201	Practicals in Molecular and Cellular studies in Life Sciences - II (Practical-I)	0
	 1.Colorimetry: Preparation of dilutions of required concentration from a stock solution of a coloured compound Estimation of Lambda max of a coloured solution. Verification of Beer Lambert's law for a coloured solution Absorption Spectra-Colour solution, plant pigment. Lambda max 2.Localization of Carbohydrates and Lipids; Starch grains of Potato / of seeds and other tubers Fat bodies of Cockroach/Drosophila/lipids of groundnut. 3.Enzymology : Detection of Dehydrogenase enzyme activity using sprouting grams / beans or muscle (as a study of mitochondrial function) Estimation of Catalase enzyme activity using paper disc rising-time technique (Blood/Plant source). 4.Effect of ageing on plant leaf pigments / separation of amino acids – using Paper Chromatography. 5.Effect of antitranspirants on stomatal movements. (1 monocot and 1 dicot). 6.Study of Electron Micrographs as listed below: Mitochondria / Chloroplast Lysosomes Basement membrane/ junctions Cilia or Flagella 	
RUSLSc P 202	Practicals in Physiological systems, Genetics and Ecology - II	2 Credits Total 45 lectures

1. Study of Barr Body	
2. Animal Biodiversity:	

28

REFERENCES:
RUSLSc 101 and 201

1	Cell Biology, Genetics, Molecular biology, Evolution and Ecology P.S. Verma and V.K. Agarwal Publishers : S. Chand and Co.Ltd., (2009)
2.	Becker's World of the Cell: International Edition – 8 th Edition Jeff Hardin Gregory Paul Bertoni, Lewis J. Kleinsmith Publishers: Pearson Dorling Kinderflay India / Pearson India (2011)

3.	Life: The Science of Biology, William K Purves, D. Sadava, G. H. Orians and H.C. Heller 7th Edn. (2003) Sinauer Associates
4.	Molecular Cell Biology – 7 th Edition Ed: Harvey Lodish, Arnold Berk, Chris A. Kaiser and 5 more (2012) Pub: Macmillan
5.	Molecular Biology of the Cell Ed: Bruce Alberts, Alexander Johnson, Julian Lewis , David Morgan , Martin Raff, Keith Roberts, Peter Walter 5th Edition (2007) or 6 th Edition (2014) Pub: Garland Science
6.	Essential Cell Biology Ed: Bruce Alberts, Dennis Bray, Karen Hopkin and Alexander Johnson (2009) 3rd Edition Pub: Garland Science
7.	Fundamentals of Biochemistry Ed: Voet. and Voet 4th edition, (2010) Pub: John Wiley and Sons
8	Lehninger Principles of
	Biochemistry Ed: D.L. Nelson, 5th edition, (2008) Pub: CBS Publishers and Distributors
9.	Principles of Biochemistry Ed: Zubay G.L, Parson W.W. and Vance D.E. 1st edition (1995) Pub: W. C. Brown
	RUSLSc 102 and 202

1.	Biological Science, Taylor, Green and Stout., 3rd edn. Ed. R. Soper . (2005) Cambridge Univ. press
2.	An Introduction to Genetic Analysis Ed: Griffiths A.J. et al (2000) Pub: W. H. Freeman(London) Seventh Edition
3	Comparative Animal Physiology, Philip C.Withers,(1992), Saunders College Publishing House.
4	Biology A Modern Introduction, B.S.Beckett (1994), GCSE Edn. Oxford Univ. Press.

30 RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

5	Essentials of Human Genetics, S.M.Bhatnagar, M.L.Kothari & L.A.Mehta, (1994), Orient Longman's Publication.		
6	Cell Biology, Genetics, Molecular biology, Evolution and Ecology – P.S. Verma and V.K. Agarwal (2009) Publishers : S. Chand and Co.Ltd.,		
7	Biological Science : - Scott Freeman (2004) Pub: Benjamin Cummings Publishing Company		
8	Principles of Anatomy and Physiology 10 th edition (2003) Gerard J. Tortora and Sandra R. Grabowski John Wiley & Sons, Inc.		
2 annalia			

Modality of Assessment

Theory Examination Pattern:

C) Internal Assessment- 40%- 40 Marks

Sr N	Evaluation type	Mark
		S

1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

D) External Examination- 60%- 60 Marks

Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time

31 RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Semester End Theory Examination:

Duration - These examinations shall be of 2 hours duration. Theory question paper pattern:

Que sti on	Options	Marks Based on
Q1	Answer any 2 questions out of 3	16 Unit I
Q2	Answer any 2 questions out of 3	16 Unit II
Q3	Answer any 2 questions out of 3	16 Unit III

Paper Pattern:

ouscolled

Q4	Short notes on topics of all 3 units; Answer any 3 out of 5;			12 Unit I, II, III
			Total	60

Practical Examination Pattern:

C) Internal Examination: 40%-40 Marks

Particulars

Journal 05

Experimental tasks 15

Total 20

D) External Examination: 60%- 60 Marks Semester End Practical Examination:

32 RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

	Total
Particulars Main question to perform Experimental task/Estimation/ dissection/ statistical analysis	Paper 15
Identifications	10
	30

Overall Examination & Marks Distribution Pattern

Semester II

Course	201		202		Grand Total
	Interna l	External Total	Interna External l	Total	
Theory	40	60 100	40 60	100	200
Practicals	20	30 50	20 30	50	100

33 RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

Course Code: RUSLSc301

Course Title: Physiological Systems in Plants and Animals-I

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;

CO 1	Students will understand as to how the physiological systems in the human body attain homeostasis.
CO 2	Explain the Central nervous system(CNS) and peripheral nervous system (PNS). Understand concept of action potential and resting membrane potential in Nerve Impulse. Explain the role of synapse in nerve impulse.
CO 3	Understand and compare different plant movements. To find its role in plant growth by designing an experiment to observe different plant movements
CO 4	Explain the Behaviour studies in animals with suitable examples. Compare between innate and learned behaviour. Elaborate on physiological aspects such as fat accumulation and thermoregulation during migration in animals
CO 5	Explain alternation of generation in plants. Elaborate on the role of environmental factor in sex determination in animals. Discuss the importance of plant and animal interaction sex determination. Basis of sex determination in plants and animals.

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

CO 6	Discuss physiology and explain the importance of hormones in menstrual cycle, pregnancy, parturition and menopause.
CO 7	Explain the importance of different types of ovules in plants. Compare microsporogenesis and megasporogenesis.

Course Code: RUSLSc302

Course Title: Biochemical Approach to Life Processes in Plants and Animals-

I Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION			
	Students will gain insights about following;			
C01	To classify enzymes, specificity reactions of enzymes,			
CO2	To explain models of enzyme action, enzyme kinetics and inhibition reactions, allostery, isoenzymes.			
CO3	To propose a strategy to isolate and purify enzymes, compare different techniques of purification.			
CO4	To explain the applications of enzymes in industry and medicine.			
CO5	To describe the pathways of catabolism of carbohydrates, proteins and lipids and to evaluate bioenergetics in catabolism of carbohydrates and lipids.			
CO6	To correlate and integrate metabolism of all biomolecules into the TCA cycle, and then the electron transport chain and thus			

35

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

summarize the and energy gen	sequences involved in cellular respiration eration.

Course Code: RUSLSc303

Course Title: Evolutionary Biology, Biostatistics and Bioinformatics in Population

Studies-I

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Evolutionary biology and genetics reveal the diversity of phyla in different geographic locations; the allelic frequencies that probably operate , correlations and other statistical applications will reveal the changes in population studies.
CO 2	To know about virtual libraries and databases
DETAILED S	YLLABUS

DETAILED SYLLABUS

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
		S.Y.BSc. LIFE SCIENCE (Theory)	
RUSLSc 301		Physiological Systems in Plants and Animals-I	2 Credits Total 45 lectures

36

r	1		
	Ι	Role of Hormone and Homeostatic	15 Lectures
		Mechanisms in Animals and Plants	Lectures
		Control systems in homeostasis and components	
		of homeostatic control.	
		Cell signalling in the nervous system and	
		endocrine system [eg. Amines (catecholamine or	
		thyroid hormones)] –	
		a) Regulation of receptors (up and down regulation).	
		b) Regulation of cell signalling: 1 st , 2 nd and 3 rd	
		orderfeedback mechanisms.	
		Hormones of Pineal, Hypothalamus,	
		Pituitary, Thyroid, Parathyroid, Pancreas,	
		Adrenal gland, Testis and Ovary.	
		Plant Hormone- Auxins, Gibberellic	
		acid, Cytokinin, Abscisic acid,	
		Ethylene.	
	II		
		Introduction to Nervous System, Animal	15
		And Plant Movements and Behaviour	
		Human Nervous System – CNS and PNS	
		overview. Types of cells: Neuronal, Glial cells	
		Role of meninges and CSF	
		Nature of the Nerve Impulse – Resting potential	
		andAction Potential.	Lectures
		Introduction to types of Synapses and	
	• •	Nerve impulses. a) Behaviour in animal- Innate and learned with suitable examples.	
		b) Migration in animals.: Physiological aspect	
	<i>KO</i>	(Fat accumulation and thermoregulation).	
		Plant movements – Tropisms, Nasties –	
		overview and its molecular aspects with suitable	
<u> </u>		examples	
50	III	Developmental Biology in Plants and	15 Lectures
C		Animals 1. Basis of Sex Determination.	
		(a) Plants: Maize	
		(b) Animals: Role of SRY gene and	
		Aromatase (c) Role of environmental factors	
		– Temperature and Parthenogenesis in	
		insects Eg. Wasp/Honey bee/Ants	

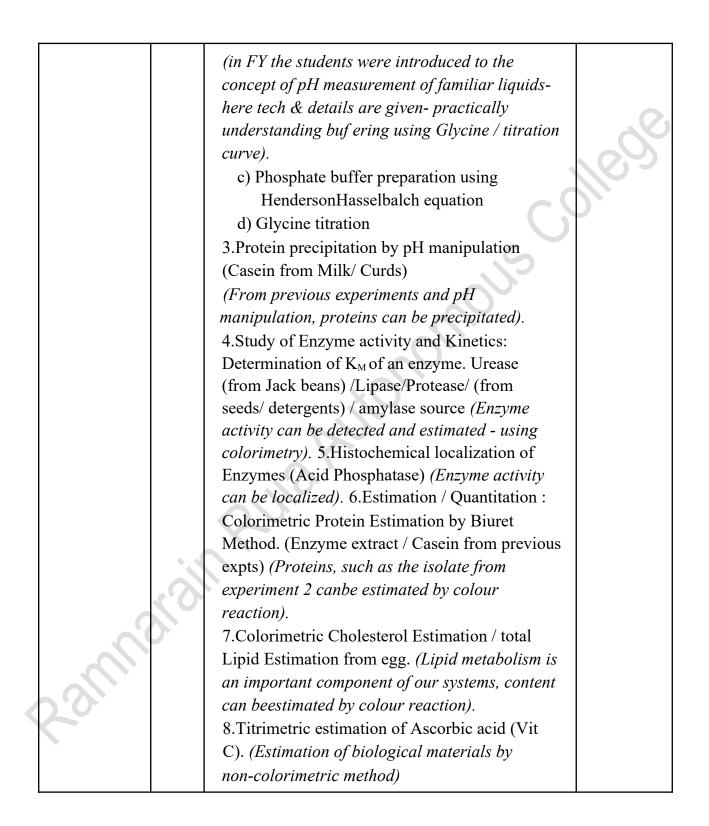
	1		
		 (d) Plant-animal interaction for reproduction Figwasp / Gall wasp (e) Sex reversal Alternation of generations in plants Eg. <i>Adiantum</i>. Ovarian and testicular functions, puberty and regulation of uterine changes in menstrual cycle, menopause, pregnancy, parturition, lactation. Artificial regulation of reproduction: Use of contraceptive methods. 1. Development of embryos in monocot and dicot plants. 	lleog
RUSLSc	I	Dischemical Approach to Life	2 Credits
302		Biochemical Approach to Life	2 Creans Total 45
		Processes in Plants and Animals-I	lectures
			100001105
		Enzymology	15
22000		Strategies for Isolation and purification of enzymes,measurement of specific activity and purification fold. Classification of enzymes (With an example ofeach). Effect of pH and Temperature. Coenzymes and cofactors : NAD, FAD, Mn, Mg, Zn and Cu (one example each). Kinetics (Michealis Menten, Lineweaver Burk plots). Enzyme Inhibitors, Activators and feed- backinhibition. Allosteric enzymes (Kinases in Glycolysis) and their significance in metabolic regulation. Concept of Isoenzymes: LDH.	Lectures
	II	Carbohydrate Metabolism and Bioenergetics. Carbohydrate Metabolism: a) Glycolysis – Process and metabolic regulation b) Pentose Phosphate Pathway c) Citric Acid Cycle: Process and regulation, Importance as a central amphibolic pathway. Electron Transport	15 Lectures

	System:	Localisation	and	Sequence	of
	electron	transporters.			

	Oxidative Phosphorylation: Mitchell's Chemiosmotic Hypothesis, ATP synthesis, Control of respiration, uncoupling and metabolic poisons.	lege
RUSLSc 303	III Lipids and Proteins Metabolism.	15
505	Lipids - Catabolism : Lipolysis, Role of Carnitine inmitochondrial permeability, Beta– Oxidation of fatty acids and integration into Kreb's cycle, Ketonebodies and their significance. Amino Acids – Catabolism: Protein Degradation liberating amino-acids', Deamination,	Lectures
	Transamination, Transamination & ammonia disposal by Urea cycle,Decarboxylation & integration into Kreb's cycle.	
	Evolutionary Biology, Biostatistics	2 Credits
		Total 45
	and Bioinformatics in population	lectures
	studies-I.	icciuies
		15
231911	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace.	Lectures
	Evidence for evolution: Comparative anatomy and embryology, Fossil records and living	
	fossils, Artificial selection. Study of Evolution in the context of human genetic diseases.	
	(BRCA1 / Huntington's/ Thalassemia).	
	Populations and allelic frequencies, Hardy	

	Weinberg Equilibrium, change in gene frequencies due to selection, mutation, migration and genetic drift (Founder's effect). Origin of variability, polymorphism, kinds of selection – directional, stabilizing and disruptive, selectionist vs neutralist.	
--	--	--

-		
II	Biostatistics	15
	S	Lectures
	Probability definition, Laws of	
	Probability. Binomial Distribution-	
	Introduction.	
	Poisson Distribution-Introduction.	
	Normal Distribution-Introduction.	
	Bivariate Data, Scatter Diagram and its uses, Kar	1
	Pearson's Correlation Coefficient, Spearman's	
	RankCorrelation Coefficient.	
	Regression equations and their uses.	


	III	Bioinformatics	15 Lectures
		 Introduction to bioinformatics: Concept of information network: internet, IP address, TCP/IP, FTP, HTTP, HTML and URLs, XML, URI, E-mail, Cloud Platforms. Virtual libraries - The European Molecular Biology Network (EMBnet), The National Center for Biotechnological Information (NCBI), EMBL, UniProt, SWISS- prot, Pub Med and its applications. Introduction to general Databases a) Structured b) Semi-structured c) Unstructured d) Basic SQL (Query). Types of Databases: (a) Genome Project (b) Protein Database (PDB/ExPaSy) (c) Species Database (Yeast and Arabidopsis) (d)Structured Database 	
		PRACTICALS	3 CreditsT tal45 lectures
RUSLScP 301	Ι	Practicals in Physiological Systems in Plants andAnimals-I 1.Good Laboratory Practices.	

RUSLScP	II	2.Demonstration of reproductive system and	
302		 location of endocrine glands in Albino Mouse Male and Female (Virtual Lab). 3.Microtome and preparation of Endocrine gland slides from above dissected specimen or any suitable plant specimen. 4.Study of Histological features of Endocrine glands. 5.A complete study of Frog Embryology (Egg to Tadpole to Adult). 6.Study of Floral parts from the given flower accessory to essential whorls hibiscus ,vinca, canna, monocot. 7.Study of pollen germination Using <i>Vinca</i> flower (<i>in vitro</i>). 8.a) Study of pollen germination in <i>Vinca</i> (<i>in</i> <i>Vivo</i>)b) Tracing the path of the pollen tube along the stylar canal using Aniline blue stain. 9.Detection of activity of plant hormones (Dose dependent response). 10.Observation and Study of locally collected 	leog
2300		Leaf Gall and any other one plant disease. Practicals in Biochemical Approach to Life Processes in Plants and Animals- I 1.A. Instrumentation / Technique - pH metry - Colorimetry - Titration. B- Process / Concept and immediate Relevance Extraction, Purification - Analysis / Estimation - GLP(Good Laboratory practices) incorporated into every practical Acid, bases and buffers. 2. pH meter - a) Principle & instrumentation and b) Determination of pH (titration of Acids/Bases/Buffers/ 'chameleon balls').	

41

RUSLScP 303	Ш	Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-I Biostatistics (using biological data) 	
		curve 3.Correlation 4.Regression Analysis . (MS Excel Optional)	20

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

Bioinformatics: 1.Use of various Cloud platforms – Google, Onedrive. 2.Use of various Internet Protocols – HTTPS, FTP, SMTP. 3.Demonstrate working on databases – a) Structured	
 b) Semi-structured c) Unstructured. 4.Identify sequence and database entry of a species in various databases – Tr-EMBL, SWISS-Prot, Uni-Prot. 	

References

	RUSLSc 301
1.	Plant physiology Taiz and Zeiger (5th edition) (2010) Pub : Sinauer Associates.
2.	Essential Developmental Biology J.M. W. Slack (2nd edition) (2006) Pub: Blackwell Publishers
3.	Developmental Biology Scott Gilbert (9th edition) (2010) Sinauer Associates
4	Fundamentals of physiology - A Human perspective L Sherwood 5th edition (2006) Pub : Thomson Brooks

5	Embryology of Angiosperms Bhojwani and Bhatnagar 4th edition (1999) New Delhi Vikas
6	Vander's Human Physiology
	Widmaier, Raff, Strand (10th edition,) (2006) McGraw Hill Int. Edition.

7	Principles of Animal Physiology C Moyes and Schulte 2nd edition (2007) Pearson Education.
8	Medical Microbiology: A guide to microbial infections . Greenwood, Slack, Peutherer and Barer 17th Ed (2007) Churchill Livingstone
9	Microbiology Davis, Dulbecco and Ginsberg. (1990), Lippincott Company, Phi
10	Textbook of Microbiology. Ananthanarayanan and Panniker 5th Edition (1996). Orient Longman.
	RUSLSc 302
1	1. Lehninger's Principles of Biochemistry Eds : D.L Nelson and M.M. Cox, Pub : WH Freeman Publishers, New York. 4th edition (2005)
2	 Biochemistry Eds : J.M. Berg, J L Tymencko and L. Stryer Pub : W H Freeman and co., New York. 5th edition (2002) Fundamentals of Biochemistry by Eds : D.Voet , J. G. Voet Pub : John Wiley &Co., New York Pratt 1st ed (2004) Principles of Biochemistry Ed: Lehninger.A Pub: CBS Publishers and Distributors, 2nd Edition (1993)
5	Principles of Biochemistry Eds: Zubay G.L, Parson W.W. and Vance D.E. Pub: W. C. Brown, First Edition (1995)

6	An Introduction to Genetic Analysis Ed: Griffiths A.J. et al, Pub: W. H. Freeman London) Seventh Edition(2000)
	RUSLSc 303
1	Strickberger's Evolution – B. Hall and B. Hallgrimsson 4th Edition (2008) Jones and Bartlett Publishers

2	Remarkable Creatures: Epic Adventures in Search of the Origin of Species Sean B. Carrol, (2009), Mariner Books,
3	Population Genetics, M.B.Hamilton, (2009). Wiely-Blackwell,
4	Population Genetics : A Concise Guide J.H.Gillespie, (2004) Johns Hopkins University Press.
5	Methods in Biostatistics of Medical students and Research Workers B.K.Mahajan, 8th Edition, (2010)
6	Fundamental concepts of Bioinformatics
7	Exploring Bioinformatics – A Project-based Approach St. Clair and Visick (2010) Jones and Bartlett Publishers
8	Bioinformatics for Dummies Jean-Michel Claverie, Cedric Notredame, 2003, John Wiley & Sons

Modality of Assessment

Theory Examination Pattern:

E) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Mark s
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

F) External Examination- 60%- 60 Marks

45 RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Semester End Theory Examination:

Duration - These examinations shall be of **02 HRS** duration. Theory question paper pattern:

Paper Pattern:

Q.	Options Marks Based on	
Q1	Answer any 2 questions out of 3 questions 16 Unit I	
Q2	Answer any 2 questions out of 3 questions 16 Unit II	
Q3	Answer any 2 questions out of 3 questions 16 Unit III	
Q4	Short notes on topics of all 3 units; Answer any 3 out of 5;	12 Unit I, II, III

	Total 60

Practical Examination Pattern:

E) Internal Examination: 40%-40 Marks

Particulars

Journal 05

Experimental tasks 15

Total 20

F) External Examination: 60%- 60 Marks

Semester End Practical Examination:

46

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

Main question to perform Experimental task/Estimation/ **Particulars Paper**

dissection/Bioinformatics statistical analysis project work 20

Identifications 10

Total 30

Overall Examination & Marks Distribution Pattern

Semester III

Course	301		302	303		Grand Total
	Intern al	Extern al	Tot Intern Extern al al al al	Tot Inte Ext al rnal ern al	Tot al	Š
Theory	40	60	100 40 60	100 40 60	100	200
Practica ls	20	30	50 20 30	50 20 30	50	100
				AOUS C	P	
				Smouls		
				Smous		

Course Code: RUSLSc401

Course Title: Physiological Systems in Plants and Animals-II

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION	
	Students will gain insights about following;	
CO 1	Adaptive mechanism in plant and animal to extreme environmental condition	
CO 2	Regulation of energy stores and various eating disorders.	2
CO 3	To describe defense mechanisms in plants and animals.	
CO4	To differentiate between innate and adaptive immunity and describe them.	
CO 4	Explain epidemiology, aetiology, pathology, diagnosis, therapy and preventive measures and vaccines for different diseases	

Course Code: RUSLSc 402

Course Title: Biochemical Approach to Life Processes in Plants and Animals-

II Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME

DESCRIPTION

Students will gain insights about following;

48

CO 1	To explain the anabolic pathways in carbohydrate, lipids and proteins
CO 2	To compare non- cylcic and cyclic photosynthetic pathways. To justify how photorespiration is a wasteful process and to review how C4 plants circumvent it.
CO 3	Understand the role of different enzymes in replication of DNA. Compare between the prokaryotic and eukaryotic replication process.
CO 4	Explain the transcription and translation process in prokaryotes and regulation of gene expression in prokaryotes.
CO 5	Compare transcription and translation process in eukaryotes. Understand the concept of post translational modifications in eukaryotes

Course Code: RUSLSc 403

Course Title: Evolutionary Biology, Biostatistics and Bioinformatics in Population

Studies-II

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
6-9).	Students will gain insights about following;
CO 1	Students should know;human evolution from social to cultural changes , from the Hunter gatherer type to the most sophisticated type of today.

CO 2	Concept of Species and Speciation, Mitochondrial DNA, Evolution of Humans, Concepts like altruism and selection, Society Evolution and Genetic Engineering.
CO 3	Study bio statistical concepts like student's t test F- Test, Chi-Square test.
CO 4	To explain the features of the genetic code and to apply it in translating nucleic acid sequence.
CO5	To annotate and to translate nucleic acid sequences into protein sequences, to evaluate protein sequence with location and function,
CO6	To compare and contrast molecular and morphological phylogenetic trees, to explain the parsimony principle and to construct phylogenetic trees.

DETAILED SYLLABUS

Course Code/ Unit	Uni t	Course/ Unit Title	Credits/ Lectures
	.?	S.Y.BSc. LIFE SCIENCE (Theory)	
RUSLSc 401	2	Physiological Systems in Plants and Animals-II	2 Credits Total 45 lectures

I Adaptive Mechanisms to Environmental

15 Lectures

Changes

Adaptations in plants to extreme thermal conditions. Adaptations in animals to extreme thermal conditions.

Fever, Hyperthermia, heat exhaustion and heat stroke. Thermogenesis: shivering and nonshivering	
Thermogenesis: shivering and nonshivering	
thermogenesis, Hyperthermia induced by	0
pyrogens. Regulation of energy stores: control of	X
food intake, Role of Leptin, Ghrelin and	5
Kisspeptin.	
Eating disorders: Anorexia and Bulimia	
Nervosa, Obesity, Diabetes.	
II Homeostasis during infections 15 Lect	ures
Innate Immunity and Adaptive Immunity.	
Mechanisms of Innate Immunity – In	
invertebrates (hemocytes) and in Vertebrates.	
(Physical and Physiological barriers,	
Phagocytosis and inflammation). Mechanisms of	
adaptive	
immunity-T and B cells. (Mode of Recognition	
of Antigens).	
Virulence factors and toxins: virulence	
factors, exotoxins, enterotoxins, endotoxins.	
Host factors in infection: host risk factors,	
innate resistance.	
Biomolecules such as secondary	
metabolites, surface protectants and	
enzymes in plants. Parasite escape	
mechanisms in infection.	

Diseases in plants and animals (with respect to epidemiology, aetiology, pathology, diagnosis, therapy, preventive measures and vaccines giving the current status)	15 Lectures
Vector borne Diseases– Malaria, Dengue or Chikungunya.	
Viral Disease-AIDS, Herpes, Swine	0
flu, Corona Virus. Bacterial Diseases- Tuberculosis or	
Typhoid, Leprosy	
Fungal DiseasesRingworm orCandidiasis, Psoriasis.	2/,
	 to epidemiology, aetiology, pathology, diagnosis, therapy, preventive measures and vaccines giving the current status) Vector borne Diseases– Malaria, Dengue or Chikungunya. Viral Disease-AIDS, Herpes, Swine flu, CoronaVirus. Bacterial Diseases- Tuberculosis or Typhoid , Leprosy Fungal Diseases– Ringworm or

	 Helminthic Diseases – Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops. 	
RULSc 402	Biochemical Approach to Life Processes in Plants and Animals- II	2 Credits Total 45 lectures

Ι	Anabolism of Biomolecules	15 Lectures
	 Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 	511805
II	plants Molecular Biology studies in	15 Lectures
	prokaryotes DNA replication in prokaryotes. Transcription in Prokaryotes Translation in prokaryotes Regulation of gene expression and its significance: Operon model (Lactose / Tryptophan)	
	Molecular Biology studies in eukaryotes DNA Replication in Eukaryotes Transcription in Eukaryotes and Post Transcriptional modifications Translation in Eukaryotes and post translational modification	15 Lectures

RULSc 403		Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II	2 Credits Total 45 lectures
	I	 and Bioinformatics in Population Studies-II Evolutionary Adaptations and its consequences Origin of Species: Biological species concept, morphological species, Allopatric and sympatric speciation, Isolating mechanism preventing exchange in populations. Rates of speciation punctuated or gradual. Life history of a species, Mitochondrial DNA and tracing human phylogeny and extinctions. Human evolution: Factors in Human Origin: Bipedalism, improvement in food acquisition, improved predator avoidance and reproductive success, Hunter gatherer societies. Altruism and kinselection. Evolution of the Society: Cultural vs biological evolution, social Darwinism, eugenics, reproductivetechnologies and genetic engineering- impact on human culture. 	Total 45
2 ann	0		

Π	Biostatistics Sampling variability and significance. Degrees of freedom, Statistical Hypothesis, Type I and Type-II errors , Level of Significance. Test of Significance Test for equality of two means. t-Tests - Paired and unpaired. Analysis of Variance (ANOVA) one way classification, F-test. Chi Square Test for independence 2x2 table.	15 Lectures
III	Bioinformatics DNA sequence Data analysis- (a) Annotation of putative genes – ORF finding.	15 Lectures

r		
	(b) Genetic code and Frame translation to aminoacids, concept of six frame translation.	
	Phylogenetic Analysis.	
	(a) Concept of paralogous and orthologous	
	genes (b) Nucleic acid based phylogenies	
	Nucleotide sequence comparisons and	
	homologies (d) Phylogenetic Trees	
	(e) Parsimony principle and limitations	
	of molecular phylogenetic trees.	
0.	(f) Globin gene analysis	
231		

RULScP 401	PRACTICALS	3 Credits
		45
	Practicals in Physiological Systems in Plants andAnimals-II	Lectures
	1.Extraction and detection of Plant alkaloids, saponines, tannins and volatile oils.2.Alkaloid separation by TLC. 3.ABO	11805
	 Blood typing. 4.Total RBC count using a Hemocytometer. 5.Principle and working on home pregnancy test slide / Widal Test- Qualitative. 	2.
	 6.Streak plating (T, Pentagon and Quadrant –Any 2)to isolate microorganisms from a mixed culture using differential media. 	
	 7.Antibiotic sensitivity of microorganisms (Plant extract, Tetracycline/ Gentamicin). 8.Study the effect of tobacco extract or caffeine or any other plant extract on heart beat of 	
	Daphnia.	
RULScP 402	Practicals in Biochemical Approach to Life Processes in Plants and Animals- II. :	
	A. Instrumentation / Technique (I / T) (1) PAGE (Demonstration).	

	 Chromatography – Paper, Thin layer, Column. B. Process / Concept and immediate Relevance (C and R) Extraction, Purification Analysis / Estimation GLP(Good Laboratory practices) incorporated into every practical Separation / Extraction techniques 1.Extraction and Detection of RNA/Ribose Sugars. C, T (<i>Extraction of nucleic acid and detection by colour reaction</i>) 2.Chromatography of Sugars – Circular Paper C, T (<i>Separation of carbohydrates and detection by colour reaction</i>) 3.Thin Layer Chromatography for separation of Plant Pigments. (Slide technique) C,T,R (<i>Separation techniques for charged, uncharged materials based on solvent partition</i>) 4.Solvent Extraction of Lipids. C, T, R (<i>Extraction of lipid and proportional estimation by weight</i>) 5.Column Chromatography of Proteins / Pigments. I, C, T(<i>Separation techniques for charged materials based on charge/size</i>) 6.Protein separation by PAGE (Demonstration) I, C(<i>Separation techniques for charged materials based on charge/size</i>) 7.Interpretation of pathological reports based on biochemical analysis.
RULScP	Evolutionary Biology, Biostatistics
403	and Bioinformatics in Population
	Studies-II
	Comparative Anatomy of the Brain (Invertebrate to vertebrate). Study of Fossils (One Animal and One Plant) Human Karyotyping- Normal and Abnormal (Numerical and Structural)

 Study of Giant Chromosome from Salivary Glands of <i>Chironomus</i> Larvae BLAST search Bioinformatics- Phylogenetic analysis using Globingene and Mitochondrial DNA. Applications using biological data :- Student t test Z-test ANOVA Chi square test Analysis of Variance one way classification Project Report based on bioinformatics/ 	511005
bioinformatics/ Biostatistics / Population Genetics / Evolution.	

References:

Kelerene	
	RUSLSc 401
1.	Plant physiology Taiz and Zeiger (5th edition) (2010) Pub : Sinauer Associates.
2.	Essential Developmental Biology J.M. W. Slack (2nd edition) (2006) Pub: Blackwell Publishers
3.	Developmental Biology Scott Gilbert (9th edition) (2010) Sinauer Associates
4	Fundamentals of physiology - A Human perspective L Sherwood 5th edition (2006) Pub : Thomson Brooks
5	Embryology of Angiosperms Bhojwani and Bhatnagar 4th edition (1999) New Delhi Vikas Pub

6	Vander's Human Physiology Widmaier, Raff, Strand (10th edition,) (2006) McGraw Hill Int.
7	Edition. Principles of Animal Physiology
	C Moyes and Schulte 2nd edition (2007) Pearson Education.

8	Medical Microbiology: A guide to microbial infections . Greenwood, Slack, Peutherer and Barer 17th Ed (2007) Churchill Livingstone
9	Microbiology Davis, Dulbecco and Ginsberg. (1990), Lippincott Company, Phi
10	Textbook of Microbiology. Ananthanarayanan and Panniker 5th Edition (1996). Orient Longman.
	RUSLSc 402
1	1. Lehninger's Principles of Biochemistry Eds : D.L Nelson and M.M. Cox, Pub : WH Freeman Publishers, New York. 4th edition (2005)
2	Biochemistry Eds : J.M. Berg, J L Tymencko and L. Stryer Pub : W H Freeman and co., New York. 5th edition (2002)
3	Fundamentals of Biochemistry by Eds : D.Voet , J. G. Voet Pub : John Wiley &Co., New York Pratt 1st ed (2004)
4	Principles ofbiochemistry Ed: Lehninger.A Pub: CBS Publishers and Distributors, 2nd Edition (1993)
5	Principles of Biochemistry
	Eds: Zubay G.L, Parson W.W. and Vance D.E. Pub: W. C. Brown, First Edition (1995)

6	An Introduction to Genetic Analysis Ed: Griffiths A.J. et al, Pub: W. H. Freeman (London) Seventh Edition (2000)
	RUSLSc 403
1	Strickberger's Evolution – B. Hall and B. Hallgrimsson 4th Edition (2008) Jones and Bartlett Publishers
2	Remarkable Creatures: Epic Adventures in Search of the Origin of Species

	Sean B. Carrol, (2009), Mariner Books,
3	Population Genetics, M.B.Hamilton, (2009). Wiely-Blackwell,
4	Population Genetics : A Concise Guide J.H.Gillespie, (2004) Johns Hopkins University Press.
5	Methods in Biostatistics of Medical students and Research Workers B.K.Mahajan, 8th Edition, (2010) Jaypee.
6	Fundamental concepts of Bioinformatics

7 Exploring Bioinformatics – A Project-based Approach St. Clair and Visick (2010)

Jones and Bartlett Publishers

8 Bioinformatics for Dummies

Jean-Michel Claverie, Cedric Notredame, 2003.

Modality of Assessment

Theory Examination Pattern:

G) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation Type	Mark s
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

H) External Examination- 60%- 60 Marks

58 RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

Semester End Theory Examination: Duration - These examinations shall be of **2 HRS** duration.

Theory question paper pattern:

Paper Pattern:			
Que sti on	Options	Marks Based on	
Q1	Answer any 2 questions out of 3	16 Unit I	
Q2	Answer any 2 questions out of 3	16 Unit II	

Und

Q3	Answer any 2 questions out of 3	16 Unit III
Q4	Short notes on topics of all 3 units; Answer any 3 out of 5;	12 Unit I, II, III

Total 60

Practical Examination Pattern:

G) Internal Examination:20 Marks

Particulars

Journal 05

Experimental tasks 15

Total 20

59

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

H) External Examination:30 Marks Semester End Practical Examination:

Particulars Paper		
Main question to		
	20	
perform Experimental		
task/Estimation/		
dissection/Bioinformati		
cs		
statistical analysis		
project work		
Identifications 10		

Overall Examination & Marks Distribution Pattern

	-		Semester IV	
Course	401		402 403	Gra nd Tota l
	Intern al	Extern al	Tot Intern Inte Tot Intern Extern Tot ern al al a	3
Theory	40	60	100 40 60 100 40 60 100	200
Practi ca l	20	30	50 20 30 50 20 30 50	100

60 RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

Course Code: RUSLSc 501

Course Title: Genetics and Immunology -I

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Explain the discoveries of genetics. Understand the Structural organization of a prokaryotic genome. Explain structural organization of a eukaryotic genome. Compare unique and repetitive sequences of DNA. Explain chromosomal condensation. Justify the role of acetylation and methylation in methylation and remodelling.
CO 2	Compare the Life Cycle of lytic and lysogenic phages. Explain the processes of Conjugation, Transformation. Distinguish between generalized and specialized Transduction.
CO 3	To explain the role of different immune cells and organs, to distinguish between innate and adaptive immunity.
CO4	To explain the experimental design to obtain monoclonal antibodies and their applications
C05	To explain the techniques to estimate Antibody or Antigen concentrations, to describe the genetic recombination theory for generating a vast array of antibodies.
CO6	To construct the ontogeny flow chart of B cells and T cells, to connect innate and adaptive pathways of complement system activation, explain how structure of MHC molecules and

function are related, describe the activity of cytokines and immune responses.	
--	--

Course Code: RUSLSc 502

Course Title: Developmental Biology and Neurosciences- I

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION	
		3
	Students will gain insights about following;	
CO 1	Role of the germinal layers of the developing embryo and the expression of specific genes, life cycle of model organisms like amphibians & Arabidopsis	

CO 2 Communications between the CNS and the PNS with the help of Neurotransmitters for memory and learning

Course Code: RUSLSc 503

Course Title:Biotechnology and Genetic Engineering- I

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
0'0	

CO 1	To explain and summarize the history of fermentation technology, to demonstrate ways of strain improvement, to design and compare media for various purposes, to formulate methods for downstream processing of different industrially important end products.
CO 2	To explain specifications for production of food and beverages, to justify the importance of different procedures of Quality Assurance in each of the production techniques.
CO 3	Understand the history of Gene cloning. Explain the role of different restriction enzymes in molecular cloning. Understand the concept of recombination mapping.
CO 4	Understand how Isolation of cloning vectors, selection of gene cloning organisms, isolation of desired DNA to be cloned is important.
CO 5	Explain the techniques like Immunological method, Nucleic acid hybridization method, Hybrid arrest and Hybrid release method(HART and HRT) for screening and selection of the desired clones.

Course Code: RUSLSc 504

Course Title: Ecology, Conservation Biology, Assessment and Management-

I Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;

CO 1	Study of the biogeochemical cycles of nature, interaction of the biotic community and the abiotic resources, loss of biodiversity, disturbed ecological web of life.
CO 2	Citizens action for conservation, restoration significance in protection GMO,IPR for sustainable living, reducing demands and reducing conflicts towards sustainable development

DETAILED SYLLABUS : -

Course Code/ Unit	Uni t	Course/ Unit Title	Credits/ Lectures
		T.Y.BSc. LIFE SCIENCE (Theory)	
RUSLSc 50 1		Genetics and Immunology - I	4 Credits Total 60 Lectures
	Ι	The Genetic material	15 Lectures
23101		 Introduction - Discovery of the genetic: Griffith's experiment of 1928; Avery, McLeod and McCarty's experiment of 1944; Hershey-Chase's experiment of 1952; and Fraenkel-Conrat and B. Singer's experiment of 1956. *To be given as Assignment/Presentations. Molecular aspects: Sequence complexity of DNA -Unique and repetitive sequences of DNA; Denaturation kinetics and 'CoT' value; Satellite DNA Genomes: Structural organization of a prokaryotic genome Structural organization of a eukaryotic genome Higher orders of chromosome packing; 'C value paradox' Introduction to gene regulation in Prokaryotes Gene regulation in eukaryotes 	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

Chromatin condensation, Modification and remodelling by acetylation and methylation Transcriptional regulation (promoters and enhancers and Transcription Initiation complex, GAL4-UAS system)	11008
Mechanisms of Inheritance and variation	15
in Prokaryotes and Eukaryotes	Lectures
Genetic recombination in	
Bacteriophages: Life Cycle of lytic and	
lysogenic phages	
Complementation in phages (Intra- and Inter-	
genic) Recombination mapping – Two- and	
three- factor crosses	
Genetic recombination in Bacteria:	
The processes of;	
Conjugation, Transformation,	
Transduction Mapping the genome by	
each method	

65

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

	III	Overview and cells and organs of immune system Overview of the Immune system - Innate	15 lectures
		Vs Adaptive Immunity	
		innate immunity* to be given as	
		assignment/ presentations	
		i)Anatomical, Physiological, Phagocytic,	
		Inflammatory barriers	
		ii)Concept of Apoptosis vs Necrosis	
		ii) Concept of PAMP, PRR and TLR	.0,
		Cells and organs of the immune system	
		i) Primary and secondary lymphoid organs ii)	
		Cells Myeloid cells- structure and functions	
		Lymphoid cells, NK cells	
		Recognition of antigens	
		i)Antigen-Specificity, avidity, affinity,	
		immunogenicity, antigenic variations, Antigenic drift and shift	
		ii) Antibody-Structure, Functions and	
		variations iii)Monoclonal and polyclonal	
		antibodies (Hybridoma Technique)	
		iv)Organization and expression of	
		Immunoglobulin genes	
		v)Antigen-antibody interactions –Cross	
		reactivity, Precipitation	
		Immunoelectrophoresis, Agglutination,	
		Radioimmunoassay,	
		ELISA, Immunofluorescence	
	IV	Antigen recognition and Effector	15
		Mechanisms Major Histocompatibility	lectures
		Complex	
		i) MHC-I and MHC-II molecules	
		ii) MHC allelic polymorphism	
	•	iii) MHC restriction	
		iv) Antigen processing and presentation-	
\mathcal{O}		endogenous and exogenous pathways	
		Maturation and activation of Lymphocytes	
		B- cell recombination, maturation, Activation	
		and Differentiation	
		T- cell maturation, Activation and Differentiation	
		and T- cell receptor	
		Immune Effector Mechanisms	

	Cytokines IL-1, IL-2, IL-4, IFNs and TNFs Complement i) Classical, alternative and lectin pathways and comparison ii) Biological consequences of complement activation iii) Complement fixation test Cell-mediated effector responses Cell-mediated cytotoxicity of T cells Role of TH1, TH2, TH17 and Tc cells	leog
RUSLSc502	DEVELOPMENTAL BIOLOGY AND NEUROSCIENCE – I	4 Credits 60
	Concepts of Developmental Biology	Lectures
	Basic Concepts of Development Sea Urchin : Mosaic vs. Regulative Development	15
8-31M2	 Dictyostelium : acquisition of multicellularity Dictyostelium : acquisition of multicellularity Drosophila : mutation series and early development. Amphibians and hen (chick) : fate maps and chimeras. Arabidopsis as the model System Life cycle of Arabidopsis – sporophytic and gametophytic generation Formation of different organs – leaf, flower, androecium [including development of anthers, pollen grain, pollen tube etc.] and gynoecium [development of pistil - up to formation of embryo sac] Fertilization, Double fertilization and embryo development, Formation of meristems (root and shoot), seed formation fruit formation Role of Homeotic genes specifying parts of a flower Plant genome project (Arabidopsis and Oryza) 	Lectures

II	Animal Development Amphibian development Germ cell and Fertilization Cleavage, Morula and blastula and stem cells, Gastrulation. Chick development : Germ cells and Fertilization Cleavage, Morula and blastula, Gastrulation.	15 Lectures
----	--	-------------

	Neurulation neural induction, Neural tube formation in amphibians and Chick Organogenesis – Eye / limb Neural Crest Cells	
II	Nervous system and its functional organization Embryonic development of the BrainVertebrate nervous system: Central Nervous System Nervous system. Functional organization of the human central nervous System Subdivisions of the CNS Forebrain:cerebrum: cerebral hemispheres,cerebral 	15 Lectures
6-31M2		

	IV	Cellular organization and communications in the nervous system Chemical Basis of Neural transmission- Introduction Ionic basis of Resting Membrane Potential: Donnan's equilibrium experiments, Nernst's Potential Goldman's equation, Sodium –Potassium pump Action Potential & propagation of Action Potential Synaptic potential and synaptic integration [Electrical and Chemical Synaptic Potential] Excitatory Postsynaptic Potential (EPSP), Inhibitory PostSynaptic Potential (IPSP) Neuro – muscular junctions Synapse: Structure, Types – chemical and electrical, Neurotransmitters – General Introduction Biosynthesis, physiological role, pharmacological significance, (examples of one agonist and one antagonist for each Neurotransmitter mentioned below Acetylcholine (Nicotinic and muscarinic receptors), Dopamine (D1 and D2 receptors), GABA and Glutamate. Neuropentide (Endorphin and	15 Lectures
		and Glutamate, Neuropeptide (Endorphin and Enkephalin).	
RUSLSc 503		BIOTECHNOLOGY AND GENETIC ENGINEERING -I	4 Credits 60 lectures

	Ι	<u>Fermentation technology – Principles</u>	
		History and development of Food & Fermentation Technology *PresentationFermentation technology & Instrumentation *Presentation	
		 Principles of microbial growth, Screening (primary & secondary) Strain improvement (mutation & selection using auxotrophy & analogue Resistance. The Bioreactor / Fermenter – Types & accessories (Stirred tank & Airlift) Media design for fermentation (include molasses, corn steep liquor) Downstream processing (use ex of Penicillin and an enzyme? for cell Disruption) Instrumentation: Principles and technique of Centrifugation, Spectrophotometry and chromatography. 	leog
23111	U S	Fermentation technology - Food and Beverage ProductionBatch vs Continuous fermentation Technological aspects of industrial production of Cheese Alcoholic beverages – Beer, wine Vinegar Single Cell Protein Mushroom, Yoghurt.Food quality assurance: Regulatory & social aspects of food biotechnology	
	Ш	<u>Gene Cloning – Principles</u> Introduction to the history of Gene cloning *Presentation	

		Methods in Molecular Biology : Molecular	
		cloning methods	
		Cutting and joining DNA molecules: DNA	
		ligase, Homopolymer tailing, Adaptors,	0
		Linkers, Use of Alkaline Phosphatase.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Dolo of Destriction on Trues I II III	0,3
		Role of Restriction enzymes, Type I, II, III, patterns of DNA cutting by restriction enzymes.	
		patients of DNA eutling by restriction enzymes.)`
		Restriction Mapping – concept and	
		numerical problems.	
		Vectors: The cloning vehicles	
		Vectors for gene cloning (Plasmids,	
		Bacteriophages as vectors example M13 vector,	
		cosmid as vector). Plasmids and other advanced	
		vectors. pBluescript II.	
		Viral vectors – Adenovirus and Lentivirus	
		Expression of Insulin and somatostatin gene in	
		<i>E.coli</i> using pBR322.	
	IV	<u>Gene Cloning – Technology</u>	
		Cloning of genes	
· · · ·	\mathbf{O}	Isolation of cloning vectors, selection of gene	
		cloning organisms, isolation of desired DNA to be cloned.	
		cioned.	
0.0		Identifying a specific clone with a specific probe,	
		construction of recombinant DNA,	
		transformation, culture and isolation of	
		recombinant DNA from non recombinant one.	
		Chromosome walking, jumping and painting and	
		Shotgun cloning. Making genomic and cDNA	
		libraries in <i>E. Coli</i> .	

RUSLSc	cDNA technology	4 Credits
504	Isolation of mRNA, cDNA synthesis, cloning of	60 Lectures
	double stranded cDNA in plasmid or phage	
	vector, screening a library with nucleic acid	
	probe to find a clone.	
	Polymerase chain reaction : An alternative to	
	cloning (Method, limitations of PCR, Application	
	of PCR, Reverse transcriptase PCR)	
	Methods of expressing cloned genes	
	Expression vectors with examples	
	Screening and selection of the desired	
	clone : i) Immunological method	
	ii) Nucleic acid hybridization method	
	iii) Hybrid arrest and Hybrid release	
	method(HART and HRT)	
	ECOLOGY, CONSERVATION	
	BIOLOGY, ASSESSMENT AND	
	MANAGEMENT-1	

68

Ι	Introduction to Fundamentals of environmental science	15 Lectures
	Structure of Ecosystem- Biosphere	
	concept of biotic communities- food chain , food web, Ecological Pyramids , Trophic categories i.e. Producer Consumer, Detritus feeders and decomposers.	. 01
	Mutually supportive relationships as in interspecific interactions eg. Symbiosis, Commensalism	leg
	Competitive relationship - Ecological Niche, Resource partitioning with eg.	

	Abiotic factors with suitable eg. , Optimum zones of stress	
	Limit of Tolerance- Law of limiting factor	
	Population Dynamics :- S and J shaped growth curve , r and k selected species with example	
	BioGeochemical cycling C, N, P,S,O, H ₂ O Primary succession (soil formation).	
6-suulo		

Π	Basic introduction about Pests, Pesticides and Environm ent Pesticide toxicity: Bioaccumulation and Biomagnification and Bioremediation of OP pesticide, persistence, Resistance and pollution health of farmers. Biological pest control: predators, parasites, and pathogens. Genetically Engineering and pest control Bioremediation of OP pesticide: using Bacillus Sps. (eg. Malathion Pesticide) Phytoremediation of Organochlorine pesticide (Chloropyrifos) using plants Pesticide regulation: eg. Endosulphan issue.	leos
III	Toxicology Management Toxicology : Basic concepts, toxicity and its impacts, industrial toxicants and hazardous materials, toxic and hazardous waste management, measurement of toxicity (LC50, LD50 and ED50), TLM and lethality studies, *Only in brief. Limitation of Toxicological studies: Comparison of animal toxicological models and Toxicity in Humans with an example Human clinical trials: Concept of Clinical trial phases - I, 2, 3 and 4. Ethical issues of clinical trials: e.g. Thalidomide / Human Papillomavirus Vaccine trials	
IV	Sustainable Development SDG, Ecological and economic growth factor for sustainable development, integrating Environmental concerns in economic decisions Economic cost of environmental degradation.	

		Costs benefit analysis Awareness of citizen on environmental legal provisions to protect the environment	
Course Code/ Unit	Unit	Course / Unit Title	Credit/ Lectures

		PRACTICALS	Credits 1.5, Lectures- 60
RUSLSc B 501	I	Genetics and Immunology - I	
P 501		Experiments to be performed by students	
		1. Extraction of chromosomal DNA from	20
		chicken liver / goat spleen	
		 Streak plating of saliva on two different media Viable count for enumeration of bacteria by – 	
		Bulk seed method	
		4. Viable count for enumeration of bacteria	
		by - Surface spread method	
		Demonstration experiments:	
		a) Study of <i>Drosophila</i> mutants from	
		specimen / slides / photographs	
		Study of UV-Visible Spectrophotometer *Video presentation and GD	
		video presentation and GD	
		Immunology	
		I)Experiments to be performed by students: 1.	
		Study of ABO Blood groups and quantitative	
		Coomb's Test.	
		2. Study of Isohemagglutinin titre in	
		blood. 3. Quantitative Widal Test.	
		4. <u>Demonstration experiments:</u>	
		a) Dissect and expose the lymphoid organs of rat / photograph	
		b) Study of Thymus, Spleen, and Lymph node tissue sections	
		c) Observation of Blast cells in bone marrow of	
~	KO.	any mammal from slides / photographs.	
RUSLSc		DEVELOPMENTAL BIOLOGY AND	Credits -
P 502		NEUROSCIENCE – I	1.5, Lectures- 60

Animal developmental Biology 1)Temporary mount of chick embryo and its developmental stages. 2) Cytochrome C- oxidase activity in a developing chick embryo. Plant Developmental Biology 1)Root and shoot development in sections of plant. I,C,T,R. eg. Scoparia sps /any other role of GA as a hormone in seed germination. C,T 3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system C,T,	
developmental stages. 2) Cytochrome C- oxidase activity in a developing chick embryo. Plant Developmental Biology 1)Root and shoot development in sections of plant. I,C,T,R. eg. Scoparia sps /any other role of GA as a hormone in seed germination. C,T 3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
 2) Cytochrome C- oxidase activity in a developing chick embryo. Plant Developmental Biology 1)Root and shoot development in sections of plant. I,C,T,R. eg. Scoparia sps /any other role of GA as a hormone in seed germination. C,T 3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system 	
 chick embryo. Plant Developmental Biology 1)Root and shoot development in sections of plant. I,C,T,R. eg. Scoparia sps /any other role of GA as a hormone in seed germination. C,T 3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system 	
 chick embryo. Plant Developmental Biology 1)Root and shoot development in sections of plant. I,C,T,R. eg. Scoparia sps /any other role of GA as a hormone in seed germination. C,T 3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system 	
Plant Developmental Biology 1)Root and shoot development in sections of plant. I,C,T,R. eg. Scoparia sps /any other role of GA as a hormone in seed germination. C,T 3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
 1)Root and shoot development in sections of plant. I,C,T,R. eg. <i>Scoparia sps</i> /any other role of GA as a hormone in seed germination. C,T 3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system 	
I,C,T,R. eg. Scoparia sps /any other role of GA as a hormone in seed germination. C,T3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification)Neurobiology1)Differential staining of white and grey matter of the vertebrate brain.2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
 a hormone in seed germination. C,T 3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system 	5
 3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.(.Identification) <u>Neurobiology</u> 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system 	
 in plants and significance of the various plant hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system 	
hormones.(.Identification) Neurobiology 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
Neurobiology1)Differential staining of white and grey matter of the vertebrate brain.2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
 1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system 	
the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
 2)Dissect & display of Nervous system in Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system 	
Invertebrates – earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
3)Dissect & display of Nervous system in vertebrates – Hen brain or any other suitable system	
vertebrates – Hen brain or any other suitable system	
4) Identifications: Permanent slides/photograph	
of: C,R	
a)Medullary nerve fibre:	
b)TS of Spinal cord	
c)Hodgkin and Huxley model	
d)Electron micrographs of neural tissue	
<u>Demonstration Experiments</u>	
Study of the Nervous system of Sepia	
with special reference to Giant axon and	
stellate ganglia T,C,R.	
Mammalian brain – eg. Goat brain	
RUSLSc BIOTECHNOLOGY AND GENETIC Credits -	
INCOLUCE 15	
P 503 ENGINEERING I Lectures	
60	

	 Extraction of enzyme: (Amylase from sweet- potato / salivary amylase /egg white lysozyme or any other convenient enzyme) Purification of enzyme : Above enzyme extract used for purifying by salting-out method Determination of - i) enzyme activity ii) specific activity Determination of the effect of pH and Temperature on Enzyme activity (Amylase / any other convenient enzyme). Determination of the Km of amylase/any other convenient enzyme. Immobilization of enzyme by Sodium Alginate method (Amylase/ any other convenient enzyme) Enzyme activity staining/ Zymogram of amylase 	leog
RUSLSc	 method (Amylase/ any other convenient enzyme) 7.Enzyme activity staining/ Zymogram of amylase using starch agar plates. 8.Non-denaturing Polyacrylamide Gel Electrophoresis of Serum proteins / Saliva / Egg white any other suitable sample/Amylase ECOLOGY, CONSERVATION 	Credits -
P 504	BIOLOGY, ASSESSMENT AND MANAGEMENT-1	1.5, Lectures- 60
831.	 Identification of minimum 5 plants and animals that form mangrove ecosystem, pneumatophores vivipary adaptations eg., <i>Kandelia kandel</i>, <i>Heritiera littoralis</i> Visit to mangrove Study of fecundity from the given sample of freshwater/marine fish 	
	4. Isolation and culturing of <i>Rhizobium</i> from the given sample.	

 5. Analysis of soils types for pH, moisture and give significance 6. Water analysis for physicochemical characteristics: DO, BOD,COD, Salinity (compare with Toxicity Limits) 7. Vegetation studies by Quadrat Methods their analysis during biodiversity field visit 8. A visit to aquatic ecosystem and methods for water and plankton collection/ Plankton identification and quantification from river / lake

References :-

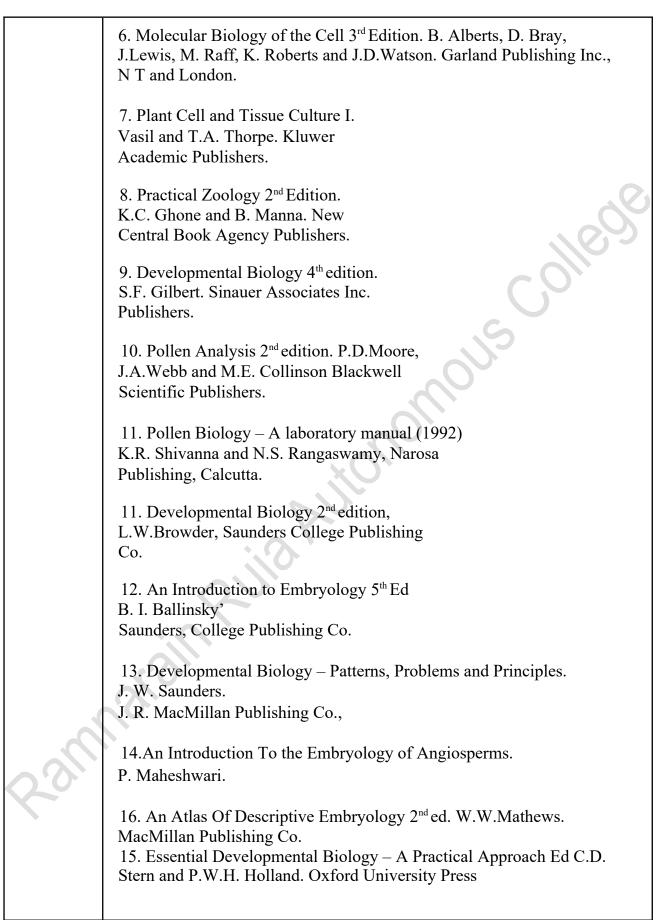
RUS	LSc 501
	Units I and II Genetics
1.	Principles of Genetics bySnustad and Simmons 4 th edn. John Wiley and sons 2006.
2.	Genetics; A Molecular approach by Peter Russel 2 nd edn. Pearson 2006.
3.	Genetics; AMendelian approach by Peter Russel 2 nd edn. Pearson 2006
4.	Introduction to Genetic Analysis by Griffiths et al 8 th ednFreeman and co. 2005
5.	Genes IX by Benjamin Lewin; Jones and Bartlett publishers, 2008.
6.	Principles of Gene Manipulation and Genomics by S. B. Primrose and R. M. Twyman 7 th edn., Blackwell publication, asianedn Oxford publishers 2007
7. 8.	Concepts of Genetics W. S. Klug and M. R. Cummings 7 th edn. Pearson 2003.
	Concepts of Genetics W. S. Klug, M. R. Cummings, C. A. Spencer 8 th edn. Pearson 2006.

9.	Human Molecular Genetics by Tom Strachan and Andrew Read, 3 rd edn. Garland Science pub. 2004.
10.	Principles of Genetics by R. Tamarin 7 th edn 2002

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS for Bachelor's Degree in Life Science 2022-23

	Units III and IV Immunology
11	Immunology 7 th edn. R.A.Goldsky, T. J. Kindt, B. A. Osborne, J. Kuby 2018.
12	Immunology: The immune system in health and disease 6 th edn. C. A. Janeway, P. Travers, M. Walport, M. Shlomchik Garland Science Pub. 2005.
13	Cellular and Molecular Immunology, 2 nd edn. A. K. Abbas, A. H. Litchman, 5 th edn 2000.
14	Basic Immunology: Functions and disorders of the immune system, 2 nd edn. A. K. Abbas, A. H. Litchman, 2 nd edn 2004.
15	Roitt's Essential Immunology 11 th edn. Blackwell publication 2006.
16	Immunology 7 th International edn. D. Mole, J. Bronstoff, D. Roth, I. Roitt, Mosbey Elsevier publication, 2006.
17	An Introduction to Immunology C. V. RaoNarossa Publishers 2002
18	Gene cloning and DNA analysis T.A. Brown Wiley Publishing House.
19 Immuno	logy by David Male Jonathan Brostoff David Roth Ivan M. Roitt 1 January 2012

RUSLSc 502


|--|

UNIT I and II Developmental Biology (Latest editions recommended)

 Instant Lecture Notes- Developmental Biology R.M.Twyman, Viva Books Private Limited, New Delhi, Latest Edition (First Edition – 2001)
2. Developmental Biology
T.Subramaniam, Narosa publishing House, Mumbai, Latest Edition (First Edition-2002)
3. Principles of Development L. Wolpert, R. Beddington, J. Brockes,
T. Jesell and P. Lawrencel Oxford University Press.
4. Developmental Biology. W.A. Miller Springer – Verlag.
5. Molecular Biology 3rd Ed.,
H.Lodish, D.Baltimore, A.Berk, S.L. Zipurski, P.Matsudaira and J.
Darnell. Scientific American Book, W.H. Freeman, N.Y.

	UNIT III and IV – Neuroscience (Latest Editions Recommended).
	 17. Neuroscience: Exploring the brain M.F.Baer, B.W.Connors&M.A.Paradiso, William & Wilkins, Baltimore, Latest Edition (First Edition1996) 18. Neurobiology 3rd edition G.M. Shepherd Oxford University Press. 19. Principles Of Neural Science. E.R.Kandel, J.H.Schwartz and T.M. Jessel. Prentice Hall International. 20. Instant Notes – Neurosciences, A.Longstaff Viva Books Pvt Ltd., New Delhi, 2002 21. TextBook Of Medical Physiology A.C.Guyton and J.E.Hall Saunders College Publishers. 22. Elements Of Molecular Neurobiology C.U.M. Smith J Wiley and Sons Publishers, N.Y. 23. An Introduction to Molecular Neurobiology Z.W. Hall Sinauer Associates Inc. Publishers. 24. Ion Channels – Molecules in Action D. J. Aidley and P.R. Stanfield. Cambridge University Press. 25. Comparative Neurobiology J. P. Mill Edward Arnold Publishers. 26. Physiology Of the Nervous Systems D Ottoson, McMillan Press.
RUSLSc 5	03
e an	 Principles of gene manipulation and Genomics by Primrose and Twyman, 7th edition, Blackwell publishing (2006) Molecular Techniques in Biochemistry and Biotechnology by S Shrivastava (2010) Pub. New central book Agency (P) Ltd Molecular Biology by Robert Weaver, second edition Pub McGraw Hill (2003) Text book of cell and Molecular Biology by Ajoy Paul Pub Books and Allied (P) Ltd. Second edition (2009) Cell and molecular biology by sp Vyas and Mehta (2011) CBS pub and Dist Pvt Ltd. Industrial Microbiology. L.E.Casida (2003) New Age International (P) Ltd. Industrial Microbiology. Prescott And Dunn's (2004) Chapman & Hall. 8. Industrial Microbiology. A H PATEL (2005) Macmillan India

Ramarain Ruia Autonomous College